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ABSTRACT

The paper deals with strict solutions u(x,t) - UX, x3,t) of an

equation

3
-tt I aik(DU)Uxixk -0

i'k-1i

where Du is the set of 4 first derivatives of u. For given initial values

u(x,O) - CF(x), ut(x,0) - CG(x) the life span T(M) is defined as the

supresum of all t to which the local solution can be extended for all x.

Blow-up in finite time corresponds to T(e) < 0. Examples show that this can

occur for arbitrarily small eo On the other hand T(6) must at least be

very large for small C. Assuming that a kF,G e c , that aik(0) Lk

and that F,G have compact support, it is shown that lim eNT(S) -. for

every N. This result had been established previously only for N < 4.

Anl (KO) Subject Classifications: 35.15, 35L67, 3SL70, 3SB40
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equations, second order nonlinear equations, shocks and
singularities
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ZONER BOUNDS FOR THU LIFE SPAN OF SUTIYONS Of
NONLINZAR NAV EQUOATIOfh ZN THREU DZNUNSIOII*

F~ritz John

This paper deals with existence of solutions u(x1X2 #x 3) -u(x,t) of a nonlinear

wave equation of the form

3

u" - aik(uu)ux~ -o. (Ia)
i'k-1 i k

for large times t.* Here ul stands for the gradient vector

u- (u3 .u 80~t A (D u.D u0D u,D4 u) - Dui (1b)

a 4
we assume that the ai(U are in C in a closed ball lUt 4 6 in R4, and that

aik(0) - ail 00c

so that (Ia) goes over into the classical linear wave equation

Du -u &U - 0 (d)tt

for "infinitesimal" u. The solution ui of (Ia) is to be found from initial conditions

for t - 0. Here we use initial data of the form

u(x,O) - ef~x), ut(x,o) - tgtx) for x 0 2 3 (1e)

where f,9 are fixed functions in C( (3 ) and c is a parameter that serves to measure0

the amoplitude of the initial values.

For a given choice of functions f(x),g(x),aik (U) we define the life an T - TMC

as the supreom of all a such that a C7-solution of (Ia,e) with Iu'I < exists for

X 6 R and 0 4- t < a. One knows that T(t) > 0 for sufficiently small 1911 ("local'

solutions of the initial value problem exist). * xistence of "global" solutions would

correspond to V0C .one knows also (see 14)) that TM5 < at least in somne caesen

ftbia is a continuation of the author's paper DMIN IUULRIT WOUMAYZON 0UYOIU UIN OF
NONLINANVE UQUhTUOV IN slam3 DIMIONS, Coam. Pure Apl. Math. 29, (1976), $49-682,
referred to as MC in the sequel.

This article represents work performed at the Courant Institute of Mathematical Sciences
and supported by the notional Science Foundation grant no. PIU-79-00S2 and the office of
Naval Research Grant No. 3000 14-76-C-0439. An outline is to appear in the Proceedings of
the National Academy of Sclences, June 1962. this report ws prepared at the Mathematics
Research Center, sponsored by the United States AMep under Contract no. D&AG20940-C-@041.



(the local solution *blown up" in finite time).* Thus for the equation*

AU u ---0(2a)utt T 2 at 0

we have TMs <(1 for all sufficiently small positive C, when

13 g(x)dx >0 (b

Realistic bounds for TMs are difficult to obtain. In the example (2a~b) one can show

that <~t A exp(R55 2  (20)

with certain constants AB. in the present paper we show that !(c) increases with

diminishing 9 faster than any reciprocal. power of c:

THEONNI

* For any real nitive 8

lim 16I T(e) ( 3)

amarks

(a) Statement (3) could be wrong for plane wave solutions of (Isa*). *indeed it does

not hold for such solutions f or 5 ), 1, if equation (Wa is genuinely nonlinear. ft

plane wave solutions are excluded by our assumption that f and g have ompact support.

Mb Relation (3) had been proved in (*) for N restricted to the interval

0 < U < 4. The proof given here for general V closely follows the ideas developed in

M.) The extension to N ), 4 requires same not so obvious additional estimates, contained

in the WRIN Wina below.

(c) The arguments leading to (3) would also permit to derive more specific lower

bounds for N(C) for fixed 9 for specific flg"&aik. Thee bounds would depend on

assumtions on the cgwt of the derivatives of those functions with order. The methods

used hore do not yield (3) for general W, when only a fiit number of derivatives of

coefficients and data are available.

This contrasts with the situation in more than S apace dimensions, where T(e) - for all
sufficiently small to as shown by Klainerman MI. So& also 12). (3).

-2-
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The proof of the TU3OP38 is broken up into a sequence of leims. Roughly one argues

an follows. Wret a combination of a priori L2-estinatea ("energyu estimates) and lobolew

inequalities leads to a loal existence proof. To get existence for real y Uarge times

t one hs to establish pointwvi decay of ul with time. Decay cannot be inferred easily

from L-estimates. It is established here by approximating u' in the L2 -norm by vectors

u' that can be shown to decay. Wa select here for u the partial swas of the formal

power series of u in terms of L8

u aeu1 +5 2 + 3 U (4)

The uk(xot) can be found explicitly by quadrature from linear recursion formulae. The

TUO0NU follows if one can prove that the derivatives of the uk decay at least like

t-(log ) for large t. (The solutions of the lnear wave equation (Od) decay

like t-1 for initial data of compact support). in (M this is shown for k - 1,2,3. Te

crude technique used there, only estimating absolute values, doe. not work for k ) 3. One

has to rely instead on cancellation of the worst oontributions (exploited here by

integration by parts). This comes about because the uk  satisfy certain radiation

conditions, making thm behave asymptotically like outgoing spherical waves. One also ha

to make use of the fact that the derivatives of the uk decay move strongly* like

t- 2 (log t)2k-2, except for Mall, IxI/t or mall I - hx/t. This is the essential

content of the Rain m.

NotAtion and asUotions.

For a vfctor e I 4 we define JUI as its euclidean length.* For V - U(xst) with

x e 13 and a non-negative integer n we set

U(x't)in I /Ja ,n ID%(xt) I2  (Sa)

and introduce for fixed t the two norms

(Tmn GUP3 IONAe) In (Sb)

*This differ@ slightly from the definition of gUI in (*), (37).

-3-



inwht olos e bal "almot exclusively a -3 In (Sb) and aD n(S) y

_________________tbr eisits; universal C such that

are f cassC i the closedbal

flvi' 6 (6.)

a (9) ~a±,v M (6b)

without restrictio generality we cnassm eet~ ns malta

and that

Iv 2+ I a (U)Y 1 Y V 4 2  (60)

for all V satisfying (6a) and all V a (V11V21,* V. 4V) e3 R4 With a given vectorfiold

u m U(X,t) We associate the UNGG differential Lerator

1(1I & M ~ ,UDP (7a)

Yb. result of appying PM3 to a misar function u(set) will be witten P(g)Cu]. In

this notation (1a) becomes p(ime)(uJ - 6.

ZUU I. (a Priori eatineste).

Let for a certain T )o 0 the function u(x,t) be a C -solution of

P(u*)(a] 0 for x* a 3, a C t 4 1 (84)

fer Which

mwt - Ran ((v(t) 1k ~

104S
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Thor* exists a constant C (depending Only On the suprem Of the aik(U) and their

derivatives of orders 4 5 for lul 4 8), such that*

t
lu'(t)ls 4 21u'(O)l exp(C I %(N)da) (Sd)

, 0

Proof. se M, p. 659 for U - So 90 - 3. The extra factor 2 in (0d) in due to the

difference in the definitions of lul, and the use of (6s).

We asign initial data

u(xO) - if(x), ut(xO) - 9gx) (94)

to the solution u(xt) of ($a), t&.re f,g W CO(23). Without retriction of generality

we can assume that

f(x) - g(x) - 0 for 1xI . (b)

figher derivatives of u(xot) for t - 0 can be computed from fg with the help of the

differential equation (a). In particular there exists a constant a (depending on the

f~g,aik) such that

uo (0) 1 5 46 for Iii C 1 (Sa)

LaMu I1. (local existence).

ret for given fg,aik

<61 C minOi, 0) (10a)

goan find a value To T O(T)O > 0 ande solution uS C of

P(u')(uJ - 0 fot x 9 a3 , 0 4 t 4 To (lob)

u(x,O) - 6f(x), ut(xO) - 99(x) for x 6 It3 0 )

for which

W u(@)) dm-1 lg2(104)

0 3d~(1001

iu'tr)3s 4 41uI(O)1s 4 4o91 C for 0 4 t o  (10i)

New cen use the same C in ($d) and (8d).

-5-
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Ju$(xt)I < I 1 for xe 33, 0 C t C TO

u(x0t) - f for IxI > t + 1* 0 4 t To  (10)

Proof, my (5b), (54), (9c), (10a)
6

iu'(x.O)I C (u'(o)) 3 • CIU'(i ( aCic C 4 . (11)

,et T T(M) be the life span, as defined on p. 1. Here T(g) > 0 because of (Ila).

Then either
t

li" f ?(s)dh - (11b)
t+T 0

or

suplu'(x,t)l - for xe 33, 0 • t < T (1)

(Bee C'), pp. 660-661). We define To - by() by

f %(B)ds _ when I T (G)ds > log2 (l1d)

0 0

T
To - T when I A(S)d,, log 2  (111e)0 C

In either

0 C

This Iplies by (4), (9c), (10a), (54) that for 0 t < TO

lul(t)l • 41ul(O)l S C 4cl (Mt*)

{u'(t))3 C 4CClCl < 6 < 1 (11g)

But them also by (00a)

iu'(x,t)i 4 4MI91 c 6 for x a I3, 0 4 t < o  (1111)

This is Inopeatible with

T

0 C

which would iply (11o) with T - To. Boe

I~fTO log - 2c- , To 4 T 1)

0

-6-
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it follows from (11g) and the definition (Sc) of AMt that

AMt - (u~t)) 3  for 0 C t 4 T~ 0 li

Thus (Ili) implies C10d). moreover (hf*), Chth) yield (10e), (10f). Finally Cl09) is a

consequence of assumption (9b)i the affect of zero initial data in the same as for the

linear wave equations (see 14]. p. 49).

Rslation (l0d) permits to derive lover bounds for To and hence for T from Upper

bounds for (u't)) 3. Trivially one has from (11g), (104)
3 42191 11 4C 2T0 191 ), log 2 (12)

Not much more can be extracted from an upper bound for (u' Ct)) 3as long as this bound

does not show decay in t. Bounds shoving decay cannot be obtained from bounds for

*u'Ct)15V which is not likcely to decays (it does not in the linear case). one way to

find better estimates for (ulCt)) 3is to compare u with an *approximation* Z, for

which 3~ shews the appropriate decay.

33

P~u')[u] w~x~t) for x C t<T 12a)

* u(X,O) - u(x.0)i Zt NO0) -ut(x,O) lb

There exists a constant Cf depending on the aiA, but not on 9 and Z such that

IE(u, - Z')Ct)1 4 4H f JO IWWI do for 0 4 t < T020~a

0

It follows from (5d) that N-(14

(u, W 3 G.(t)) 3 + 414C fJO *wa)1 5 doe1e
0

Proof. See C*),* pp. 662, where (1 2a) is written as a syetric hyperbolic system for the

vector ul* The factor 4 In 020c arises again from the difference in the definitions of

-7-
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lul. The norm IWells for the acalar w is defined exactly as that for vectors U in

We shall aoply Iamia iii to the case where u is one of the partial sums of the

formal power series expansion f or u with respect to Ct

2 3
au0 u 1 + 9u 2 , + a 4... (13a)

To get recursion formulae for the uk we expand the operator P(U) of (7a) formally with

respect to Us

P(U) * + 11(u) + P2(11) + 0. C3b)

where Pk(U) is a form of degree ki in the comonents of U with coefficients, that are

quadratic in D,,D2 ,03 Subetituting C13a~b) into the equation PVu')(ul - 0 and

comparing terms with the same power of 9 we arrive at a sequence of equations

%- QU130)

for N - 1,2,3,... . Here QUis a polynomial in the first and second derivatives of

the uk. Bach term, of this polynomial is (except for a constant factor) of the form

I (Du. Ok (13d)

with multi-indices a Land integers k#where IsLI- 1,2 and

I k - 11 L ; 1 r o 2(1 3e)
i-1

In particular

91 0

-Q ~ u3 - 11(' 2 l(UPE1 - 12(u;) (ulJ (13g)

Q4 -P I(";)(v 31 - lP1(u - p1(u;)Eu11

-1 2 (u;) (u 3 - ap2(u;fu2 ) lull - p 3 (u) Cu1) (139)

(With 32(UV) demotin the polar from of 12(U)). The equations 0130 combined with the

initial conditions

IT~ii-I.



U a f (x), D4 u1 - glx) for t - 0 13h)

Uk - O, D4uk  0 for t- 0 when k > 1 (131)

recursively determine the um. Setting

u x c 1 t + a2 u2 + + au (03j)

we hall .have to estimate IP(u')t ;VI 5  and {;}s and than apply DiEma Iii.

The required estimates for the ;, involve the asymptotic behavior of the uk for

large t. To describe this behavior adequately we introduce the radiation operators

3
L -Di " xixkIxI 2Dk for i - 1,2,3 14a)

k-1
3

4 - D4 + k xKIxl tnk 114b1

Finally we denote by 0- 1w(x,t) the solution v of the equation

0 v - w(x.t) (14)

with vanishing initial data:

v(x,0) - Vt(x.O) - 0 04d)

We first note the asymptotic behavior of solutions of the linear wave equation.

Eat v(x,t) be the solution of

Ov(xt) - 0 for x e It
3
, t ; 0 (ISa)

v(x,O) - f(x), vt(xO) - g(x) (1Sb)

3 2
where f e C ge C and

fMx) -g(x) = 0 for Ixi > I (ISc)

Then

vtxt) - 0 for It - Ixii > 1 (Sd)

v - 0(1 )l Div - 0( Lv - 0() (IS*)
t + 2 t + 2(t + 2) 2

mere 0 stands for a constant depending on {f)2 and (9) 1

-9-



Proof. Classically

V - VI(X,t) + D4v2 (x,t) (16a)

where

v I  4 jj g(y)dB I V2  I ff f(y)dS (16b)ly-xl-t y tI-It y

(154) is obvious from (ISc) since for it - Ixii > 1 the ball Ixl < I and the sphere

|y - xl - t do not intersect. Since the area of intersection of the ball and the sphere

is at most equal to min(40,4t 2 ) it follows inediately that

Vl(x,t) 4 (min( 1 , t))suplgl - 0( 1I) (16c)

The same argument shows that D v1 - 0(1/(t + 2)), where

Dv, --L ff D_ gIydS for i - 1,2,3 (16d)i O 41t ly-xl-t y

4I t y-xl-t

Hero

3
I C tDgc(y) (16f)
k-I

is the normal derivative of g on the sphere Iy - xl - t with direction cosines

k (Yk xk) (16g)

of the exterior normal.

the same rate of decay is then found for D4 v 2  and for

ADD 42  1 If D f dS for . 1,2,3
472 " O4 - ly-xl't y

D2V - AV -" ff Af dS
4 2 2 dt y-xI..t y

completing 
the proof of

V - oC0(---), Div - 0C(-(-) C16h)

iOne easily YerifLes, by transforming the surface integral (16b) for v1  into a volume

tintegral, that for I 1,2,3

-10-

7-



DY V, IfC(1+-tdf (24ig +. A- (161)
i t y-ik- t an y 41t2 ly~xit an La

Zt follows that

-*j fi (2C~ 4. + Y )du
41:t2 Iy-xl-t ± di y

j I f "* XIkili 2  
ff (24k +  

k-)d -O((t + 2)-2)
k- t 2  ly-xI-t

for 1 1,2,3, since

lyff 1tdo y 4 4W, 1C1  ( I : Is~ 1yI y-x I-t Y

1y,<1

Moreover by (16,i), (154)

%V 1  2 - 0 + 2 If Xkklxl'l)g day
O4 t ly-xl-t k

+ Iff ((t - 1x1) + _ YkXklxl " ) d3 - O((t + 2)
41t ly-xl' k

Then also

LiDkY2 - O((t + 2)
-2

) for i - 1.2,3,41 k - 1,2,3

since DkV2  to obtained from v1 by replacing g by Dkf. From the identities

Li x -2 1I-1 i)
L1D4 v2 - L4 D1 v2 - I (ixklxl 2+4 XkIxI LilDkv2

for £ - 1,2,3, and

3

L4 D4 v2  k k (k, + xk xll)Dkv2

it then follows that

L D4v2 - (0((t + 2)
2 ) for 1 -1,2,3,4

This completes the proof of (So). a

-7-



LEMa V. (T. MIN LEMA).

Let w~x~t) aC 2  for x 6R3, t 0, and lot

w(X~t) =0 for lXI > t + 1 (17a)

IWIID iw VI 49M lo C t + 2) 1b
(lxi + 2) 2 (t lxi + 2) 2Clb

I:v CN2loq Ct + 2) (17c)
iLlwl( + 2 ( - Jxi + 2)(t + 2)

for i - 1,2,3,4 with a certain kc. Then

u - 0 1 V (174)

satisf ie

u(xt) - 0 for liZ > t + 1 (17e)

I l4A o 2 t+ 2) (17f)Iiu Clxi + 2)(t - Jl + 2)

lgk+2 (t + 2) 1;
ILium CA Cixl + 2)(t + 2)(1g

for i -1,20A,. where A is a universal constant.

Proofs* We postpone the lengthy proof of the MAIN LEMMA which only deals with aproperty of

the operator 0, to the Appendix, in order not to interrupt the arguments leading to the

proof of the THOREMn.

Let the u3 be defined recursively for M - 1,2,3,... by the differential equations

(130 with initial conditions (l3h,i) satisf ying (9b). Then

V3 x~t) - 0 for lxl t + I (lea)

0 lo2M2(+2) for Jul 3 1 C(18b)

L M 2N2(+ L)for lei 0O (Ise)
i.Cl + )(t +2)

-12-
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I
Bere 40 stands for a aontant depending on f~g,aLkNos. Rlations (l ,b) imply that

23g?-2t + 2))04
€(t))k - ( t 1 t 2IN)

1q;(tj - O(log2UL2(t 2)) lf)

for all k b 0.

Proof. We ne induction over N. Since OD% 1 - 0 and the initial data of have

their support in the ball Jxl 4 1, we find from Lmma V that (18abo) holds for

N 1. Let (la,b,c) hold, when N is replaced by a smaller number. Then

ODGUt - DeOU. for al ) 0 is a linear combination of term of the form

r a I
I (D Uk) 1)
L.-1

where
r

ki V# k Uu , 1i r b 21 1*1 ) (b)
i-I

(see (13d)). Since here k( - 1 by (19b), the term (19a) can be estimated by

Induction assumption by

(Il + 2)(t- Il + 2)'r1o9(t + 2)

with

9 - (2ki - 21 + (212 - 2) + ... + (2kr - 2) - 23 - 2r

Since r b 2 it follows that

DU -a0((Ixl + 2)2 (t - Jxl + 2) 12og2 C4(t + 2))

Similarly for I - 1,2,3,4

LIODa us - LID aN

is a linear combination of term

LD 1 )(D0 2  2 (D

satisfying (19b). Using the induction asmption we can estimate suah a term by

(Ixl + 2)-r(t + 2)1 (t - lxl + 2) 1r o09(t + 2)

-13-
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and find that

LDO un - 0((Ixl + 2)- 2 1t - + 1 2- 1log 2K4(t + 2))

Now
a -1 a
Du Yu + 0 Du.

where v i is a solution of v1 - 0 with the same initial values as D-u. Since all

derivatives of u. (including t-derivativen1) vanish for Ixl > 1, it follows from LzImAS

IV and V that satisfies (18abc). a

We define u% by (13j). By (18d) there exists a constant r. depnding on

f~g~aik such that

(yt) 5  22j loo2No2(t + 2) for 1I1 < I (20a)t + 2

and thus
J° (u (s))5s 2N1clg lT 2 2b

We denote by %.1 the set of 9 for which

CF nJCo11 0 2n-(T0(C) + 2) < log 2 for n- 1,2,...,N (20o)

lci < 1 Ili < - (20d)

with C* as in ZIAZ III and c as in (9c). We have

exp(C f 0 % (s))53ds < 2 for n , 2, .... V (20e)
0

when a 0 3. By 4ef inition

%C t for k 4N (20f)

Let C,uT 0  be as in LVIg 11. ror given N there exists a constant y (depending

on foh,aiku) and an integer V such that

S*NO1 VE(u, -U)(t)I 5 4 y l+1log (t + 2) (21)

for 0 t < 0 () and • 6 Z6 .

-14-

A7 ',
z:4



Proof, Tise proof proceeds by induction over N. (it is given for V 102,3 in

pp. 675-676). Using LOSS III we have from (20e)

E ;' u)(t)U 5 4 S 1 IWI(S)I~ds (22*)
0

where

-v P(U-)[u1 (22b)

w W + w**+ w* (22c)

with

W*- I(Mpul) -o- Pk~u)( 1  (22d)

W- - (0 + p P~~j )[Uj (22e)
J01 ku-I %--~l

N j I k-I (I~ k k(%-J-k+i ))161 31 2

(This is the analogue of the decomposition for V - 3 in M', p. 676, formula (145)).

getting
* -j 3

PVu')-0 I P k~ W u) -W I bik(u')DiDk (229)
k-1 i,k-1

we see that

eRu 1) (22h)

is a linear combination of terms of the form

(0bAul)M0u)( 2 U)..D 0r u)siDYu j(221)

where 6 stands for differentiation with respect to ul and the multi-indices

'''r#Y Satisfy

11 r ), 01 10 11 + 192 1 +4 ... + Is r' I iy - lei + r + 2 (22j)

15 11 2, 10 21 0 2...,10 rl 1 2, Iii 0 2 (22k)

-15-



owe bi(u*) in the truncated Taylor expansion of -aLk(u') starting vith term of

order 9 - + 1. It follow then from the boundedness of the derivatives of the aLk(U)

foelil < that

4bih(u. ) . O(lu'l :j+ l r ) for r 4 U- j + I

0(1) for r > 5- J+ 1

fy (22jk) for Jul 4 5 at most one of the I0k can exceed 4. Hense

(D ) U2) ... .(((Iu 3  Ii) for r )

It follow from (119) that in all cases

Ds~a (uIcdu j) - 00(gsv ugu5 (Uq6

memo by (lift), (11d)
-2

t- 2 ) (221)

We turn to the estimate of v . y definition of the in (13) we have the

formal identities

U-I

Pleu + t2 u2 + ...)[CuI + 2 u2 + ...)

"aluI + 2-2 + ...)+ k P(u+ 2; + ...)(UIk,l jai1

whiob yield actual finite identities when we collect the term with equal powers of €.

No the coeficients of Ck with k I N will not be affected if we replace

LU u'j +u 9 U;'*.. in the last expression by the finite sum
U1; + gU2' + C Uj + "'. + gJ''Jtk:

and restrict to values C U and k to values 4 N - . This means that

-16-
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i" CO. I( + U., + .... + )

+ jk 4.l + giup;g +. + *-1%k I3-1 k-I

contains no terms 9 with a 4 N and is equal to a linear combination of terams o the

form

9U.+ (D 1 Ok 2 uk2 (
¢B++J'DBI )(l D )]2  ... (D u z

with

I ), Of r ), 21 10~ r 1,..I )111 2 4 r4mU

The same holds for any Dew-**. It follows from (18e) that

wm-(t)1s - O(al1 sup ((u'(t)) )tAu'(,Ut),6)

(22m)

- (3341 loq4N-d(t + 2))
.0C.,1lojx~t 2 1

Finally

Pklu)- kl -j-k+l )

is a form of degree k in and u' -andwhere each term contains at

least one of the latter factors. Thus

oC((PklU.) - kl ;-J)k+I))1[JU j] )

Is a linear combination of term of the form

g(D',,t l..(D aU.jV- .)(D 01 - yUjh.).( ( u: t 3 ) u

With

jI l Is ) It IYI ) 21 r + a - kh Is 1 N - j- k 4 1 4 N - 1

1Is1 I lr +i i+ 1 + ... + l161 + yI l + + r + a

-17-
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For lei 4 5 It follows that at most one of the 10k' am exceed 3 and that ins of

thim exceeds 6. Using (20a). (164) and the induction assumption we find

'(ku)- p 01;w-j-k+1t )tJU j )(01 5

Ce Or6j((u' - -- l )(t)) ) 2-1E(IN -- k. )(0)I (t)r

- %(6Jifl~g 3-;Jk

-O(sr+J+(*-J-k42)s (t + 2)-1 og9P(t + 2))

with acertain is. Here, since a ) and r + sk,

r+j+(N-J-k+2)n t~+Njk1s~rjs(--~1 4

it follows that

NO~ loq"(t + 2))
1v**(t)I 5 -O t + 2

Altogether then

.M -o(s"*+ log W (t + 2))

with a certain vi. Nene by (22a)

IEu' - ;;)(t)1 5 ft0(C + log C(t + 2))

This cmletes the proof of (21) by induction over M, provided we still verify the

case 9 1. In that case w~and D Ivanish. By (321)

Iw~i 5 - 0C62 (t + 2)1)

and (22a) furnishes the desired relation

on, -( 2;(t1 - 0(6lc(t +~ 2))a

WtTO (6) -*(23)

(This implies the THROMD, since 1(6) ;PTO )



I

P f Assume that (23) does not hold. There exLts then a constant X and a sequenas of

€4 tending to zero for which

lot lTo(s C K

Then 6 - C vil satisfy (20c,4) for all sufficiently large J, and thus ) 3c . fly

(21), (5d), (20a)

{ 4 (t1')l + Y I 'vlog v (t + 21

c lo t2( + 2) +YclClN+110v(t + 2)FN. ,  t + 2

for 5 - ) with 2 sufficiently large. t follows from (10d) that

lo To jo)d
0 3

ra N j1o,2N- (T0 () + 2) + YCICjIN+I1T 0Cc)lovV (T 0 () + 2)

c v 1 9log2M 1 (T0 ( 2)) + 2) + YCKjIloV(T0(cj) + 2) (24)

since here

109(T 0(C~ 4' 2) 4 lo10 5I I + 2)v ILKn -

(24) leads to a contradiction for j * *. Thus (23) holds. a

- 9-



Let V(xt) 6 C2  tor x 6 2 3 , t 0, and let

w(x,t) 0 for Jxl •t +1 (25a)

ivliv I • K loq (t + 2) for Jul < t + I (2Sb)
(Jul + 2) 2t- Iul + 2)2

lv I  i 2 log kt + 2) for Jxl < t + I (2sc)
(Ixl + 2)2 (t - Jul + 2)(t + 2)

with a certain k ) 0 mnd L defined by (14ab) for i = 1,2,3,4. Then

u - rl-l w(254)

satisfes

u(x,%)- 0 for Ixl t + 1 (2e)

AN 09 2(tlx+ 2  o x~ 2fI L (i + 2)(t + 2) fo lxl < t + I (25f)
I I,~u, (I l +2(tIl+ 2)

I° k+2 4+" for Jxl < t + 1 (259)
l.u.•(Ixl + 2)(t + 2)

for I 1,2,3,4 with a universal constant A.

by Duhymml0s principle

t
u(x,t) 0 W(Xt) - I (x.t,s)ds (26a)

0

3
ere w(x'ts) for x a , t ) a is the solution of

DuI(xt,s) - 0 for x 0 I3, 0 a 4 t (26b)

N(x.t,a) - 0, a (x,t#s) - w(xs) for t - a (26c)
t

Far a we have (see (16b)) the integral representation

N(x't.s) - 4w(t - 8) -x -y(26d)

(25) is am imediate oonmquence of (25), (264) since w(ys) - 0 for lvy a + 1, and

-20-



lYi > Ixi - t + a > 8 + I

for Iv- xl - t- a, lxl > t+ 1.

since by (2Sab)

w(xt) - o(x 10Lkct + 2 .) GX) (2")

(t + 2)

we have the trivial estimates

a - O(M(t - s))p u - 0'v- O(Nt2) (26f)

We observe that Diu in the solution of

r3Diu Div

with initial values

D u - 0, D4 D U i4v(x,0) for t - 0 (26q)

Thus

D u .O1 'D V + a4u0 (26g)

where U0  is the solution of

0 uu0 - 0 (26h)

u0 - 0, 0 . v(x,0) for t -0 (261)

since also Div - 0(), we find in analogy to (26f)

D u - O(Nt2 + xt) (2 5):ii
In Particular Diu - 0(N), if we prescribe a numerical upper bound for t, say t < 10.

It follows that (2Sf,g) are satisfied for t < 10 since here lxj in restricted to values

less than t + 1. In what follows we can assume that

t > 10 (27)

Modified integral representation for u.

in (26e) introduce spherical coordinates 8,4 on the sphere Iy - xi a t - a, with

the polar axis pointing in the direction from x to 0, with S - polar distance, *
latitude. Then (see Figure 1)

I 2i

N(x,t,*) - f sin ode f wd# (29a)
0 0

met

r = lxi p •- lyll e - (Oxy)l *- j (x~y)g q coo # (2Sb)

-21-
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The #-integration corresponds to y varying over the circle of intersection of the cone

* Iyox - qlylixi with the sphere iyI - a -p. Denote generally by jthe average of w

an that circles

*J(x,p~q~s) 2'w(y,s)4 (2Sc0
yrx-qlyI lxi

iyl-4-p

for x 0 0, IqI 4 1, p 4 a. Here # is an angular measure on the circle (# arc length

* ** divided by radius). Then

N(x~t,s) - t - 4 f J(x~puq,s)sin OdS (28d)
2 0

where p and q are the functions of 0 defined by

p )2~ 2  
- 1,t-s)2 2

q =Q(presot) - a 2+r t-8 (2Sf)
We~ - p)

introducing p instead of 6an variable of integration in ( 28d) results in the

expression

N~x,t,s) -f a k(x~p~s~t)dp (28;)

*where we define A 2

k(x~p~s,t) -J(x~p.Q(ppIxifs~t)ps) (28h)

B a a - Is - t + rig A - a - it + r - si - 2a - t - r (2S1)

We introduce new independent variables in w(y~s) which are better suited for

describing outgoing waves. F or that purpose we associate with w( y, a) the function v

defined by

v(y,p,s) -w(s - P) -y- a) for y IsO, p 4s, 0(3 (29a)

which is homogeneous of degree 0 in y. We have conversely

w(y's) - v(y,s - IyI~s) for y * 0, a ), 0 (29b)

Substituting this expression for w(y~s) into (28c) and replacing y by (sa p)y yields

J(x~p,q~s) f v(y,s)d# C(290)
y~x-qlxi
lykI-

-22-
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We observe that by asgumption (25a)

v(y,p,s) - 0 for p ( -1 (29d)

and then also by (29c), (28h)

j(x,p,q,s) - 0, k(x,p,s,t) - 0 for p < -1 (29e)

It follows from (28gi) that

N(x,t,s) = f a k(x,p,8,t)dp for s < t + r - 1(29f)
-1 2r 2

N(x,t,s) - 0 for a < t r (29g)

Derivatives of u. Direct estimates.

Let i - 1,2,3,4 be fixed. Set

W(x,t) - Diw(x,t) (30a)

By (26g)

Di -U "W + 614u

Bero (mee (16c), (26e))

t 0.2(r +2)(t(N ( +2))

since u
0
(x,t) 0 0 only for t - 1 < r < t + 1. Thus for the proof of (25f) we only have

to sbow that

3-w 01 N  log k+
2
(
t 

+ 2) (30b)(r + 2)(t - r + 2)

We represent []'IW in complete analogy to u - -lw, introducing

V(y,p,s) - W((s - p) -Y-, 8) (30c)

yl-1
J(X#poqf.) - f V(y,p,*)d# (30d)

2yx-qlxI

K(x,p,S,t) - J(x,p,Q(p,Ixt,Bt),s) (30s)

B

Q(x,t,$) - a K(x,p,s,t)dp (30f)

A

with AB,Q as in (28f,i), so that

r30 l(x,t) " f Q(xt,s)d8 (30g)
0

-23-



For V we find from assumptions (25ab) that

V(yps) - 0 for p < 1

V(y,p,s) - 0( 14 log ( + 2) (30h
2 - p + 2) (p3

which implies that

J(xpqs), K(x,p,@,t) = 0 for p ( -1 (301)

J(x,p,qm), K(x,p,st) - 0( N logk (a + 2) ( (30j)
( - p + 22 (p + 2)2

We can verify (30b) imediately for bounded t - lxi, say for

t - 3 < r < t + 1 (31a)

For by (30j) with -1 < p <

L.- pK(x,p,ut) - 0 (M log k(a + 2))
2r r(s - p + 4)

1
while by (281) B 4 a - (a - t + r) - t - r 4 3. Thus, since here r > ( Ct + 2)32

0(x(t) - 3( K3 logk(a + 2) dp) - 0( logk(t + 2)

-1 r(a - p + 4) (t + 2)(s + 1))

I o lgk+1t + 21 M loqk+2(t + 2)

t + 2 C(r + 2)(t - r +12)

for r satisfying (31a). Henceforth in the proof of (30b) we can assume that

0 < r < t - 3; t > 10 (31b)

In this section we find the relevant estimate for Q(x,t,s) in the case where

(t + r - 1) • a • t (32a)

without making use of the radiation conditions (25c). (32a) implies that

-1 4 A - 29 - t - r (32b)

By (30f,j) Bk

Q(x,t,*) - O(f B logkCt + 2) 2 dp)
A r(s - p + 2)(p + 2)

(32c)

S0(H 10k(t 
+ 2) ((B - A)CS + 4) + log (a - A + 2)(B + 2)

r,. + 4) '(A + 2)( + 2) (l - B+ 2)(A ;--2)

-24-



Here

-1 4 A B- 8 - It- r- al 4 a

0 4 B A - 2r + (t - r - a) - It - r- el 4 2r

8-A r,2r -
1+2 r

01'A +2)(B +2)-oC B -A BC,+ 'A
log C B- + 2)(A + 2) log((I + 2 A + 

)

9 2 + I )

a2r( - 8 + 2 A-+ 2

T+4 t+r+7 t' 0( )

Hence

t) N logk(t + 2) C 1 +t1 r)
(r + 2)(t + 2) it r - al + 2 2 - t - r +

and thus
ft Q(x,t,s)ds 0 (M logk+1 (t + 2) 32d)

1/2 (t+r-1) (r + 2)(t + 2)

Derivative of u. integration by parts.

To complete the proof of (25f) we need in addition to (32d) that

1/2 (t+r-1) (M logk+
2
(t + 2)

1
/2 (t-r-1) ) (,t,slda - 0 (r + 2)(t + 2) 

(33)

(Note that an In (29g)

Q(x,t,s)- 0 for x < 1/2 (t - r - 1) (34a)

since then B C -1, and that

1/2 (t - r -()) 34b)

by (31b)). The considerations leading to (32d) are insufficient for the proof of (33).

The estimate (32c) still holds when A is replaced by -1, but is not good enough to yield

(33), and we have to have recourse to i-Jre complicated estimates involving the raditation

conditions (25c). In this section we restrict ourselves to values 9 with

1/2(t- r - 1) 4 a 4 1/2 (t + r - 1) (34c)

-25-



The relation V a Div between w and V yields relations between v anid Ve

namely

V(y,p~s) - -- X (Y.P.s) - LVyps we La1,3 (4d
a - p YL M~(..)we

V(Y,P,B) - v a(y,p,s) + v C y,pos) when i - 4 (34*)

in order to unify the argumsents we introduce

yii

V'(y.P.G) - vs (y~pos)l v*(y.p.s) -v(y~p,s) when 1 4

so that V* and v* are homogeneous of degree 0 in y and

V(y~p,s) - V*(y,pe) +' v*(y~p,) (35a)
p

In analogy to previous notation we set again

J*(x~p~q,s) - - V*(y,P~s)d# (35b)
2w X-q lxi

J'(x~p,q,s) a f V.(y,ps)d* (35c)
2TY*x..qlxl

K'(x~p,$ut) - J*(x,p.Q(pIxIrsot).s) (35d)

k*(X,p,$,t) - J*(X,PQ(p,Ixl~s~t),s) Mek)

Then by (35s), (30d), (30.)

J(xp,q~s) - J*(x,p,q~s) + J;(Xtp,q*§) (35f)

K(X,PG,t) - K*(X~p,m~t) + k'(Xepts,t) (359)
p

-Q p(p,r~s,t)j(xop,Q(p~r~s~t)rs) (35q)

Consequently (see (29f)), using that k*(x,-1.o,t) -0,

-26-



a

, Q... k (a~,t)+J* (!....2 (xpros t)d (35h)p~~t)

one verifies easily from (29a) and the definition of V* that

V*(yo,m) ftLiw((s - P) v a...) (36a)

for i - 1,2,3,4, and that

k Y
v (Y.p.8) I 2- ) P ) (36b)

(a-p + 2) 2(a4+ 2)(p + 2)

v*(Y,P.$), v*(Y.PS) - o( - log (s4+ 2) 2 ~ (364)
p ~(as- p+ 2) 2(p + 2)2

Finally we obtain from

*v Ek(,,)-W Lkw((s - P) *.3) (6

and the definition of v* that

V* (YOP's) 0--l11+ayl L"

0 log k (a + 2 )

tyi(s - p + 2)(p +. 2) (( p +. 2)(p +. 2)' 54.2)

( N lok( a + 2) )(36f)
lyi~s - p 4. 2)(s 4. 2)(p 4. 2)

Relations (360,d), C35b~o,d~e) imply that

J*(x,p~qos), K*(xpos~t) - 0( No Iq(u4+ 2)(39
(a p +. 2) 2(a + 2)(p 4. 2)

-27-



J*lx,p,q,s), k*lx,po,t) - 0( K log k 2+2) 2 (36h)
to - p + 2) (p + 2)

We first consider the contribution to I of the term

- -B k*(x,s.aet) (37a)2r

in (35h). By (36h)

a-0( 1log(t+2) )1 I( Ct+2) 1( 1. .+4)
+2 +2 2 (37b)

r(s - B + 2)(B+) r(s + 4) (3 + 2)

where

-1 4 3 - a - Is-t+rl ( t I/2 (t-r-1) s * 1/2 (t+r-1)l t - r 3

Thus

-+- O(t - r +2

If here r < I we have fro (37b)

o( lo k (t + 2))
r(t - r + 2)

1/2 (t+r-1 aft , lokt + 2) loei(t+2) + 2f d, ut( )J" (r +" 2)(t -r; () 37c)
1/2 (t-r-) (t-r+2) 2)

If, on the other hand, r > 1 we have

r( + 4) 2 a 
5  + 2 +  2  ( +2)2

- O(-j ~ 2 1 ))(+ Cs * 4)Ct- r + 2) (t- r + 2)(2o- t v +
r+2(a + 4)2 (a+A

and hence

1/2 (t+r-1) Owls N .ek~l(t + 2) 37)

1/2 (t-r-1) "I + 2)(t -r + 2)

We next consider

- 6 -- gC(3.P*1 ~) + (38.)
-1 j-..t k.,. .t))

.- 1



Here byv (369,h)

- 9V KLk..0( M1*1l(t~a +_2__1_+__2_
2r 2r w -p + 2)(p +2) s+ 2 (s-p + 2)(p+

-(HX9 (lgt +2)
rsp + 2)(p + 2)(s + 2)'

0 ( Nlogk(t +2) ( I , )
r( + 2)(a +4) ap+ 2 + 2)

since P 4 a 4 4. flenee by (34c)

eO(ft lgC't + 2)r~s + 2)(s + 4

O ok+1( ) o
r0(l0 -Cr+ 2)

0 0(# 1 ,gk.1 ICt + 2) frr3

(a + 2) 2Cr + 2)

In either ae

12 (t~r- I) N kt +2

1/ Ir1 Os-0(( 2( r+2 (38b)

This leaves

Y f2 Q Cp,a,t)j;CX~p#g(P~r~a~t)*a)dp (39&)

For j given by O35c one easily derives the differentiation formula,

q~xpqa 2 f Cz(k -rqy k W CY.P.8)#
21rC1-q yz-qr k-1 Di

Here for x-y -qr, In -

Ix r qykI ' x - rqyl

N -29-



it follows fram (36f) that

: (x,p,q,s) - X 0 °k ( 2) 2) (39b)
q (0-p3)(a + 2)(p + 2) (1 -

my definition (28f) of Q(p.r5e.t) we have

-1 - Q2(p,r,,t) 2r(s - p) (39c)

where

R - ((t+r-p) (t-r-p) (t+r-28+p(2s-t+r-p) (39)

is Beron's expression for four time the area of the triangle with vertices O,x,y (see

Frigure 1). moreover

Q p(porls,t) - (39e)

where

) 2 + r2 _ (t S) 2  (39f)

Consequently

Y-o0(f 1log(t2) ap) (399)
-, r(s-p+2)(s + 2)(p + 2) R

Writing

8 - -2(s -p) 2 + (t - p)(2s-t+r-p)-r(t-r-p) (40a)

and using that

0 < s-S < s-p < to-p O B-p 2s-t+r-p < t-r-p for a < t-r

0 < *-B < -p < 2s-t+r-ps 0 < i-p t-r-p < 2*-t+r - p for a > t-r

we snee that

B - O((t + 2)(t-r-p)) for a < t-r (4Ob)

8 - 0((t + 2)(2a-t+r-p)) for a > t-r (40c)

We first take up the case

a > t-r (40d)

This case only occurs when
rt+ 1

r > (40e)3

-30-



because of (34c). moe

at-ra 0( )- >~ 1/2 -t~r-P)

sea", by (40c)

(&-p4.2)(p + 2)R

-~ +(L 2 (1 I I atr)

a + 4 a-p 42 p + 2 I ~ - ) t r p ( ~ - s .

0 t + 2 +_______ /21-t+ri

(a + 4)v't+;:2- V(t-r-p)(2s-t+r-p4) (p + )f-p

Newse by (399), (40o)

y (f +2 Cg! t + t 2)) )
r~o + 2) 2Vit+-sl t-r+2

O( Iog k+1 (t 4 2) /2u9-t~r+I
:ct + 2)t-r+2 (s + 2) .tr2o-I

With the subtitution

a + 2 - lt+rO3)(t-r3(I + v

2(t+r*3) + 2(,tr+3)v 
2

we find

1/2 (Wr- I) M 1 ok1 +2 -1/2 3/2 v~d

t-fr .' 0I(t +2)(t-r2 - tr3- a (+ *2

(40f)

. (N loO +(t +)
(r + 2)(t-r+2)

with
a- fiit- 1

if (t-r+3) (3r-t-1)

We cam to the contribution of the values a with toee (343

1/2 Ct-i-I) < < ( D -NinI/2 (t+r-1),t-r) (41a)

-31-
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a OM( )ttp) 28-t~r

t+r-p t+14l t -

t+L-2s~p 3, tot-la-I

Hntce by (99)

Y 0(J fa itloak(t +2) I (t +2)(t-roI)
r(s + 2)(o-p4-2)(p + 2) (4r-2s-I)(2-t~r-p) )

r~s + M)e + ) /f t~rt-lI N ib

with

2*-t~r

-t ep+2 p + 2 doat~-

: -t-r-*.2 0 (1 + OAO 2su-t~re2 0 (1 - w

0+ lg 2 (1

/2sa-t+r42 I b

2*-t+r+1 2n-t+r+I
t-r-w+2 , b - t~ (414)

Nere by (41a)

2- (t-r-l) a +I r+I

b 2 - (t+r-1-2s) ~2r
b 2 r + (t+r-1-2m) -2ro 1

b lo -2r loq(4r + 2)

3 so that

(a3+ 2)(a +4) ifr(r + 1)(t~r-Za-i) t -r-se2 /782a-t+r+2

In~ the special case 0 < r < I we hae by (41a)

D -*1/2(t+r-l)1 s+2 > 1/2(t+2) i t-r-@+2 > 1/2 (t+2)g 2s-t+r+2 )I
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. loqk'(t + 2 ) )
(t + 2):r(t+r-20-1

and thus

1/2 (t+&-I) oK lnk+g t + 2)) 0 (M loqk+1O t + 2)
1  tr-1) - t + 2 (r + 2)(t + 2) (410)

In the rmaiLning cae 1 < t < t-3 we have

0 (N ]lgk+1 t + 2)/. t+2 /
(t (/t+r 2,- ( -/i2 /i+ r+21 ))

(r + 2)(a + 2) 2+-tr2+2

Here

We nee" a similar estimate for

(t--1)(2t++2) dB-G (449)

I (t--1)

/2 +tzl 2 (t+r-2-)(rs2-l) d

Let at first 1 < r < t/2. 7hen &+2 )>1/2(t-r+3) > (t+2)/S, and

Gm t _D _ b  d
t + 2

1
/2 (t-r-1) a ti- 6)-tt-r-,12) t + 2 a " 2 o

with
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I

a . 2r for I < r < I +t-3r+5 3

a 3r-t-1 b . 2r for t o I < < t+
t-3r' t-3rS 3 3

4 t-rs for It'-5 r <3-t-S b - -t- 3-

In each of the three sub-cases
-(log(t + 2))

as is easily verified. If instead t/2 < r < t-3 we have

D - t-ri t+r-2s-1 > t+r-2(t-r)-i - 3r-t-1 > 1/4 (t+2)

___ _)tr d______ 
f b

o( 1/ (t-r-1) (s02) t-r-se2 V(t-r+4)(t + 2) a (0 - o)l
with

2 t-r+5 4
t-r+4 2(t-r+4) 7

Here also

G - 0( +2)(t-r+2))

Altogether then for I < r < t-3

D efD Yda _ lo + (t+ 2))

S2 ( tf -1) (r + 2)(t-r+2)

This, together with (41e), (40f), (38b), (37d), (37c), (32d) completes the proof of (2Sf).

Proof of the radiation conditions.

We notice that (25f) implies (259) when 1xJ - r 1/2t. Thus in the proof of (259) we

can restrict ourselves to the case

1/2t < r < t+l (45a)

By (264) and the assumption w a C2  we see that

w(x,ts) - " J w(x + (t- s)C,)dS

belongs to C2  in xtts for 0 4 a 4 t. Because of (26a), (26c)
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L = J L1 W(x,t,ald) (45b)
0

since

Lit -L L ± 614 (45c)

we find from (29), (281) that

t t a
L Lu - 614 I ktx,kAs,t)ds - 6j4 j 4s d f 2 ktx,p,&,t)Gp

0 A 2

t a
+ f do f L klx,pl,t)dp (45d)
0 A 2 2r

Take first the case i - 1.2.3. By (28h), (45c), (14a)

3 -

L k - ( in - r'xLxa)jx (x,p,q,s) (45e)
U-1 a

aee by (29c), (36e), (25c)

31 -
(XP"~ ~ ~ qx ))f ( v -Ir-Y%a2 yxmqr rye n- 1

( 1 loq( + 21 ) (45f)
"r(m-p+2)(. + 2)(p + 2)

It follows from (45d), (45a) that for I - 1,2,3

S O df o ( a+2) 4p)
0 A r (a + 2 )(p + 2)

0 ( lN k 2(t + 2)) (459)
(r + 2)(t + 2)

(More precisely the p-integration is taken over that portion of the interval (A,u) In

which p > -1).
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We turn to the came 1 4. By (28c,h), (25b)

0 -- k(Xp.s~t) K lo( a +k 2
k ~ r(a-p42)(p 4 22

-o(" loqk~t + 2) ( I + I + + 544

r(s + 4) 2 sp p + (p +2)2

it follows that

ta
do 2 P 2 k(x~p,*,t)dp

0 A 2r

( ok+lt+2). ( lkg+l +2

0 (MlO(r +t 2)) o (t +2)j (46a)

similarly

a Ak(X#Ae~tt) - 0 for A - 2s-t-r < -1
2r

a Ak~xkst) 0 ( K logkCt + 2)
Zr rtt~r-s,2) (2s-t-r+2)

0( K loq(t +2) -_) for A -2s-t-r >-t
r(r + 1)(2s-t-r+2)2

it follows that

ft A. k(xAsot)ds - 0(!! log (t + 2) (46b)

0 V- ~ (r +2)(t +2)

This leaves the last term in (45d). By (14b), (28h)

+ Q)I(XCOQS) 3 -1
Lk a Q t qxpQ + OFIIr .I I (47a)

The contribution to N u of the term with j is again of or~or
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as follows from (45f), (45a). We estimate next

(Q + Q - (2s-t+r-p)lt-r-P) (47b)2(s - p)r
2  

q

We find from (39b) (which applies just as well to jq as to j*), and (39c,d) that
q ~ q)

k
a 2 (Q + Q )j - O 2 log (a + 2) /(t-r-p)(21-t+r-p)

r r tiq r (s + 2)(p + 2) V(t+r-p)(t+r-2s+p)

Here

2s-t+r-p < t+r-pj t-r-p < t-r+

If also a < 1
/ 2 (t+r-1) we have t+r-2+p > t+r-2s-1, A < -1, and

B a -p + Qj Q p - 0 (M logk+1t + 2) -/ t-r+,
r Qr t q " 2 Itr2

-1 r( + 2)
1/2 (tr-,, B +

/ f ' (Q + Q )j d p 
-

O
(M logk 2(t + 2) t-r+1

0 -r tq 2t+r+3

0(M logk+2(t + 2))

(r + 2)(t + 2)

If instead 
1
/2 (t+r-1) < s < t we have s+2 >

1
/2 (t + 3), A > -1 and

a- (Q + Q tj " o( M logk(t + 2) /-t/~)
r Qr tq r2(t + 2)(p + 2) "p A

fLo2( +Q )j 2 0(Mlog (t+2) f dp
A r p q r2 t A (p + 2)Vp-A

-. , logk(t + 2)

r Vft +2)(A + 2)

t 3k

I do f B * (Q + Qt)iJ d p 
-

0 (
1-l2k(t 

+ 2
))

1
/2 (t+r-1) A r r tq r

-(M logk(t + 2)
(r + 2)(t + 2)

This completes the proof of the radiation conditions (25g) and of the MAIN LE4MA.
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